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ABSTRACT

_.-» This paper describes a cutpoint method for sampling from an

n-point discrete distribution that preserves the monotone rela-
tionship between a uniform deviate and the random variate it gen-
erates. This property is useful when developing a sampling pnlan
to reduce variance in a Monte Carlo or simulation study. The

alias sampling method generally lacks this property and requires

2n storage locations while the proposed cutpoint sampling method
requires m+n storage locations, where m denotes the number of
\ cutpoints. The expected number of comparisons with rhis method
is derived and shown to be bounded above by (m + n - ;)/n. The
i paper describes an slgorithm to implement the proposed method as
well as two modifications for cases in which n is large and pos-

sibly infinite.
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I. INTRODUCTION
Let X be a discrete random variable ou the integers l,...,n
with probability mass function (pi; i=l,...,n} aud distribution

function (d.f.)

q. = q. 1 +p; i=l,...,n. (1.1)

One straightforward way to sample from {qi; i=l,...,n} is to sam-
ple U from the uniform distribution on [0,1) and then determine X

from
X = min {i: q 2 u}. (1.2)

If the d.f. of X is stored in a table beforehand, this procedure,

known as the inverse transform method, requires n storage spaces

and EX compsrisons on average, which may prove costly when n is
moderate or large.

At present, the most efficient way to sample repeatedly from
the d.f. of X is the alias method of Walker (1974a, 1974b, 1977).
See also Kronmal a;d Peterson (1979). This method requires stor-
age for two arrays, the aliases Al,...,An and alias probabili-

ties {ri = pr(X=iiL=i); i=1,...,n} where for i=1,...,n




P |

pr(L=i) = 1/n

pr{X=iiL=i) + pt(x-AilL-i) =] (1.3)
and
1 0o
P; = pr(X=i) = Y I pr(x=iiL=j).
i=l

Prior to beginning the sampling experiment one chooses these ar-
rays to satisfy (1.3). After sampling U one computes L = |nU) + 1
and selects X = L if T 2 U(mod 1/n) or otherwise selects X = A;.
Here [©] denotes the largest integer less than or equal to 6. Note
that only one comparison is required to generate each X. The
arrays determined by (1.3) require 2n storage locations and are
not unique. If one wishes to retain the tabled values of (qi}, an
additional n storage locations are required.

Although the time independent nature of the alias method has
clear appeal, the method has two limitations that deserve
attention:

a. In general, the alias method does not preserve a monotone
relationship between U and X as does the inverse transform method
(1.2).

b. The allocation of 2n storage spaces may be infeasible
either due to the magnitude of n or the requirements of other
steps in the program in which the alias method is imbedded.
Furthermore, if one wishes to maintain the table of {qi}. 3n

storage locations are required.
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While the issue of storage requirements is self explanatory,
the significance of the monotone property needs clarification.

Let Yl and Y2 be random variables with d.fs. Fl and F2 and iaverse

i d.fs. Gl(u) = min(y: Fl(y) > u) and Gz(u) = min(y: Fz(y) >u)
respectively. Then the minimal correlation between Y1 and Yz occurs

for Y. = Gl(U) and Y, = GZ(I-U). The result is due to Hoeffding

1 2
(1940). See also Whitt (1976). 1In Monte Carlo sampling and dis-
crete event simulation one often wants to make use of the minimal
correlation property to induce a variance reduction for & given
ssupling cost. More generally, one often can achieve a variance

\ reduction by appropriate use of the sequence Uk = U + (k-1)/r (mod 1)

for k=1,...,r with a sampling technique that preserves monotoni-

city. See Hammersley and Handscowb (1964) and Fishman and Huang
(1980). The alias method may prevent one from effecting this
reduction in variance.

2. THE CUTPOINT METHOD

We now describe the cutpoint method for sampling from the
d.f. of X. The procedure preserves monotonicity, maintains the
table of {qi} and allows the user to adjust space and time re-
quirements to accommodste the global needs of the problem setting.
The procedure again uses the inverse transform approach but with
more information computed beforehand, as in the alias wethod.

The proposed method is not new having been described in Chen and
Asau (1974). However, the present paper is the first to study

the tradeoff between computation time and space anaslytically.
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For a given positive integer m, define the cutpoints

I, = min {i: q > (2-1)/m} 2%l,...,m (2.1)

Im+1 = n.

Let L = {mU) so that

pr(l <x<1 ) =1 (2.2)

1
where X is as defined in (1.2) and (6] denotes the smallest in~
teger greater than or equal to 6. The maximal oumber of com~

- I 4+ 1 and the

parisons needed to determine X exactly is IL+1 L i

expected maximal number of comparisons is

cm,n - (Imﬂ. - I1 + m)/m. (2.3)

The storage requirements are wm+n locations with the tabled d.f.
of X comprising n of them.

Note that c“,n is less than 2, implying that the cutpoint
wethod requires less than one additional comparison on average to
preserve monotonicity when compared to the alias method with the
same allocation of storage. 1f the d.f. table of X also is to be
maintained in the slias wmethod, then for equal storage for the
cutpoint method C2 o,0 is less than 1.5 so that at most 1/2 of an
additional compsrison is needed on average.

A more revesling evaluation arises if the d.f. of X is

directly taken into account. Let J- denote the number of com~

parisons on s trial. Then I aquale X -~ Il. + 1, wvhere X is

determined as in (1.2), and has expectation

o U ————
M L.
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EJ =1 + EX - EI
m L

m (204)
=1 +EX-] IL/m .
=1

Table 1 illustrates the proposed method using the eight-point

distribution in Fishman (1978, p. 459).

Insert Table 1 about here

If space is not an issue then the alias method is the procedure of
choice. One then may view EJm - 1 as the cost of maintaining the
monotone property.

3. THE CASE OF LARGE n

1f {qi} has infinite support (n® =) then neither the alias

method nor our cutpoint method alone suffices to perform sampling.
This insufficiency also may occur if n is merely large relative
to space availability. Here Kronmal and Peterson (1979) suggest
using the alias method "for a finite (but large) range of the de-
sired discrete distribution and a special tail-generating method
for the tail beyond”. Ahrens and Dieter (1973) discuss the tail-
generating methods for several common parametric families of
distributions. More recently Ahrens and Kohrt (1981) described a

cutpoint method with a more dense frequency of cutpoints in the

tails.

Our own proposals for this situation take two forms. Note
that in principle (2.4) suggests that EJ may be determined for
P . infinite n if EX is finite. Consider n* < n such that a pro-

cedure is available for computing {qi; i > n*}. The cutpoint

——l T




method then applies directly with tables used for {qi; i < a¥}

and the available procedure for i > n*, The mean number of com-—
parisons remains the same while the mean cost in time is propor-
h tional to

= %*
My EJm + N E(Jmlx > n*)pr(X > n¥) (3.1)

where , is the (computer dependent) increase in time required to

evaluate 9, for i > n* relative to the time required for a table

lookup of 9, vwhen i < n*,
As an alternative, suppose that in addition to tabling

{I‘; t=1,...,m} we elect to table {qI » Ay seeesd } instead of
1 2

T

‘ {ql, qz...,qn} . To sample X, one proceeds, as before,

to select IL but now calculates 9 o, 9y seee a8 needed.
L+1 L+2
Such calculstions may be faster and more accurate due to the

nearby starting value 9; - The mean cost in time is propor-

L
tional to

= (1 + cz)EJlll -, (3.2)

¥2
where c, is the (computer dependent) relative increase in time

required to evaluate 9 for i#¥ IL as compared to the time re-

quired for a table lookup of 9 -
L

Clearly My < u, if ond only if

1
¢, E(J - 1) -~ ¢) E(I 1X> o%) pr(X > o*) <0 . (3.3)

In addition, the second procedure requires 2m storage locations

while the first requires m+n*. For most applications € >¢, > 0
- and as n* increases the left hand side of expression (3.3) mo-

notonically incresses from a negative value of (c2 - cl)EJn -y
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when n* = 0, to a positive limit of <, EJm - Cy if EX < = ,
Again, the user is faced with a tradeoff between time and space
requirements.

These remarks are intended to be suggestive rather than de-
finitive. Individual decisions should be guided by the require-
ments and resources of the application intended. Although the
dominance of any of the methods described here with respect to
time and storage remains a question, one should keep in mind that
all the cutpoint methods described preserve the monotone property.

4. ALGORITHMS
\ In this section we.present algorithms for implementing the
cutpoint method when sampling from the d.f. of the random
variable X. It is assumed throughout that Q is the name of an
array or function such that Q(i) = 9;- In addition x denotes

the smallest integer greater than or equal to x.

Given the positive integer M=m, the algorithm CMSET in Figure 1
returns the array {I(2) = I&; 2=1,...,M}, as described in Sec-
tion 2. If desired, the array {QI(&) = qI‘; £=1,...,M} suitable
for use as described in Section 3 is also returned; otherwise, one

deletes statement 8 of CMSET. Note that if the d.f. of X is

tabled,. the array Q is not destroyed by CMSET.

Figure 1 About Here

Algorithm CM in Figure 2 enables one to sample for X, once
) the setup in algorithm CMSET has been effected. An algorvithm for

sampling from the uniform distribution on [0,1) is used in the h
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first step of CM. The random variable X need not have finite
support in order for CM to function cor ‘ectly. The value of X

upon return from CM is the variate desired.

Figure 2 About Here

Algorithms for the setup and use of the alias method are
given in Kronmal and Peterson (1979) and Ahrens and Kohrt
(1981). Care must be taken with these algorithms to preserve

{qi} and avoid the use of large arrays during initializatiom.
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TABLE 1. EXAMPLE OF CUTPOINT METHOD
pi qi ] m+n cm,n EJm
.01 .01 1 9 8.00 5.31
.04 .05 2 10 4.50 3.31
.07 .12 3 11 3.33 2.31
.15 .27 4 12 2.75 2.06
.28 .55 5 13 2.40 1.71
.19 .74 6 14 2.17 1.64
21 .95 7 15 2.00 1.45
.05 1.00 8 10 1.88 1.44
16 24 l.44 1.19
. ! q{ )
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FIGURE 1. ALGORITHM CMSET i

1. L +0.

2. J+0.

3. J « J+l.

4., QJ « M*Q(J).

5. IF QJ £ L THEN GO TO 3.
6. L + L+l.

7. I(L) « J.

8. QI(L) +« QJ/M.

9. IF L<M THEN GO TO 5.

10. RETURN.

FIGURE 2. ALGORITHM CM

1. SAMPLE U FROM UNIFORM {0,1).

2. X « 1(fwul).

3. IF U < Q(X) THEN RETURN.

4, X « X+1.

5. GO TO 3.

B M Ve 1 1o e e - -
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